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An experimental study of turbulence in a 
densit y-s t ra tified shear flow 
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Mechanics of Fluids Department, University of Manchestert 

(Received 6 August 1963) 

This paper concerns an investigation of turbulence in the density stratified shear 
flow of a specially designed wind tunnel in which the density gradient is created 
by differential heating of the air. The first three sections of the paper consist of a 
description of the apparatus and of the mean temperature and velocity gradients 
in the tunnel, together with a discussion of a method of measuring low wind 
speeds based on the periodic shedding of vortices by a circular cylinder. In the 
remaining sections details of the experimentally determined structure of the 
turbulence of the flow and of its eddy conductivity and viscosity are presented 
and their dependence on the over-all gradient form of Richardson number, 
[g Z’/&]/[T(i3U/&)2], considered. 

1. Introduction 
Homogeneous isotropic turbulence has received most of the theoretical and 

experimental attention devoted to the subject of turbulent flows generally, 
largely because the former problem seems, more than any other, to be sufficiently 
simple to offer some hope that solutions may be found in any given case. The 
flows encountered in real life are seldom either homogeneous or isotropic and often 
have the added complication of a velocity gradient, together with gradients of 
density, salinity, temperature, etc. These gradients in turn bring about profound 
changes in the structure of the turbulence. 

Two alternatives are open to the would-be experimenter in this field; he may 
either explore the naturally occurring density stratified flows, such as those in 
the atmosphere, or he can attempt to reproduce similar conditions in the labora- 
tory. The second of these two courses was chosen for the present investigation 
and a special wind tunnel, in which essentially linear temperature and velocity 
gradients extend over an appreciable depth of the flow, was constructed at  the 
Barton Mechanics of Fluids Laboratory of the University of Manchester.1 

This is not the first wind tunnel built for the study of turbulence in a density 
gradient, cf. Prandtl & Reichardt (1934), but it is unusual, if not unique, in the 
way grids are used to introduce the temperature and velocity gradients into the 
flow. 

7 Now at Nottingham and District Technical College. 
$ Now removed to the Department of Aeronautics, Imperial ColIege, London. 
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2. The wind tunnel 
The heated shear-flow wind tunnel, an elevation of which is shown in figure 1,  

is a small tunnel, nominally 0.5m square in section. It is of the open-circuit 
type, being simply constructed of plywood and standing on a ' Dexion ' frame- 
work. Air first enters the tunnel through a small entry flare, over the mouth of 
which is stretched a piece of finely knitted nylon fabric. This nylon acts as a 
very efficient dust trap so that when experiments are performed on reasonably 
clear days it is possible to operate hot-wire anemometers in the tunnel for quite 
long periods without them becoming significantly contaminated. Downstream 
of the nylon the air passes through two wire gauzes, which help to break up any 
large eddies which may enter the tunnel, and then through the two grids which 
are the heart of the apparatus and which render it unique. 

0.5 1.0 0 
Scale for inlet detail 

m 

401 co Tr m \o 8 
h 3 & A  4 + 4 b 6 F d F i b 2  9 2 F;k' 

0 1 2 3 4  5 
) I , *  1 . 1  * I . l m  

Scale for main figure 
FIGURE 1. Elevation of the wind-tunnel showing the positions of the two 

special grids and the locations of the traverse points (T.P.). 

The first, or heater, grid, which imparts a temperature gradient to the flow, 
has eighteen horizontal bars consisting of nichrome tube heating elements each 
7-9mm in diameter fixed one above the other at 28mm centres. The heating 
elements are connected in a network together with control resistors so that there 
is a linear gradient of power input across the grid, the greatest power going into 
the uppermost rod and the least into the lowest, the total power consumption 
being about 6 kW at 245V. A range of temperature gradients can be obtained 
at  any particular air speed by the use of a dimmer placed in series with the 
heater/control resistor complex. 

A further 0.6m downstream the tunnel is spanned by the second, or shear, 
grid. This grid is similar in appearance to the heater but had seventeen bars as 
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originally built. The design follows the principles laid down by Owen & Zien- 
kiewicz (1957)) the grid finally adopted for use producing a flow with a shear 
parameter of 0.85 ( = Ah/ U in the terminology of Owen & Zienkiewicz) so that the 
theoretical variation of velocity with height is given by the formuls 

U ( Z )  = V,,[l+ 0.85(z/h-$)],  (2.1) 

where U(z )  is the velocity a t  height z measured from the tunnel floor, U,, is the 
centre-line velocity and h the height of the tunnel ( =  0.51 m in this case). The 
necessary variation of drag coefficient is accomplished mainly by reducing the 
diameter of the bars towards the top of the grid. Since the bars were made from 
material of commercially available stock sizes it was not always possible for 
them to have the calculated diameter and some small adjustments were there- 
fore made to their separations so as to preserve the required gradation of drag 
coefficient. 

On testing the grid after installation the anticipated linear velocity profile 
was not observed over the whole depth of the flow but, on the contrary, the 
velocities in the lower half of the tunnel became progressively more and more 
in excess of those predicted. It was, however, possible to correct this defect 
by an empirical adjustment of the drag of the lower part of the grid so that the 
whole of the velocity profile became sensibly linear. It is not a t  all surprising 
that the first-order theory of Owen & Zienkiewicz, neglecting as it does squares 
and higher powers of Ah/U,  should fail to provide completely accurate design 
data for a grid having a shear parameter of 0.85 and it is in fact more remarkable 
that the resulting profile was largely as desired. By taking into account higher 
powers of Ah/U,  Ellison? has developed a more refined theory which predicts 
discrepancies of the type observed. 

The working section of the wind tunnel is unremarkable, except insofar as it 
constitutes some 70 yo of the total length of the tunnel. Variation of the over-all 
velocity of the flow is achieved by adjusting the speed of rotation of the fan, 
the latter being driven by an a.c. electric motor with a continuously variable 
gear box. 

The centre-line time-mean velocities used in the experiments to be discussed 
later ranged from 0.4 to 2m sec-l, typical velocity and temperature profiles 
being shown in figures 2 and 3. These profiles were taken at  a station 4.57m 
downstream of the shear grid and from them it can be seen that the velocity and 
temperature gradients are both very nearly linear over an appreciable portion 
of the flow. From the gradients obtained with maximum power input to the 
heater grid a graph, figure 4, can be drawn which shows the greatest value 
of gradient-form Richardson number 

(where g = the acceleration due to gravity, T = the time-mean temperature in 
O K ,  U = the time-mean centre-line velocity and z = the vertical co-ordinate) 

Private communication. 
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which can be obtained at  any particular centre-line velocity, though smaller 
values can, of course, be obtained at any velocity by reducing the power input 
to the heater. 
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FIGURE 2. Typical velocity profiles in the neighbourhood of the centre-line of the wind- 
tunnel. 0, centre-line velocity = 117 cm/sec; +, centre-line velocity = 55 cm/sec. 
FIGURE 3. Typical temperature profiles in the neighbourhood of the centre-line of the 
wind tunnel. 0, centre-line velocity = 120 cm/sec; + , centre-line velocity = 61 cm/sec. 
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FIGURE 4. Graph showing the maximum-gradient-form Richardson number Ri, 
which can be obtained for any given time-mean centre-line velocity. 
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3. Measurement of mean velocity 
Whilst the measurement of mean temperatures and temperature gradients 

was carried out in a conventional manner using thermometers and thermocouples, 
a more unusual approach was necessary in the case of velocity determinations. 
Fluid velocities may be determined, in principle, by measuring any quantity 
which varies with velocity but the choice is almost always limited to total and 
static pressure differences although occasionally other phenomena, such as the 
rate of heat transfer from a heated object, may be used. The routine determination 
of air-stream velocities in the range 04-2-0 m see-l is not easy when the conven- 
tional methods based on pressure measurements are used and the lowest speed 
which can be measured with reasonable accuracy using robust, easily handled, 
manometers is probably of the order of 4mlsec-l corresponding to a pressure 
difference of about 10 Newton m-2 or 1 mm of water. The Pitot-static pressure 
differences ipUz for the range of velocities encountered in the heated shear- 
flow tunnel are much smaller than this, from 0.1 to 2.5Newton m-2 or 0.01 to 
0.25 mm of water. Having decided against conventional pressure measurements 
some alternative velocity measuring device had to be found. One obvious 
possibility was to use a hot-wire anemometer but this was also rejected since 
the calibration of a wire was hardly likely to remain steady enough when exposed 
to the atmosphere in an open-circuit tunnel. 

Another phenomenon, which is strongly dependent on fluid velocity, and about 
which a large amount of data exists, is the periodic shedding of vortices down- 
stream and to either side of a circular cylinder. The earliest detailed study of this 
phenomenon was that by Strouhal(1878) in whose honour the non-dimensional 
group nd2/v (where n is the vortex shedding frequency, d the cylinder diameter and 
v the kinematic viscosity) is known as the Strouhal number S.  A year later Ray- 
leigh (1879) showed that the Strouhal number should be independent of the 
elastic properties of the wire and be a function of the Reynolds number only. 

The most comprehensive recent sets of experimental observations of the 
rate of vortex shedding as a function of Reynolds number are those of Roshko 
(1953), Tritton (1959) and Berger (1962). Each author worked a t  velocities 
higher than those of the heated shear-flow tunnel and with very ‘quiet’ flows 
having little turbulence; for example, Roshko quotes a level of turbulence of 
0.03 % or U ~ / U ~  M lo-’, as opposed to perhaps in the Shear-Flow Tunnel. 
The curves corresponding to the empirical equations of each author are repro- 
duced in figure 5 in which the Strouhal number S is plotted against the Reynolds 
number Re of the vortex shedding cylinder. The curves from each source for 
the range 50 < Re < 150 are seen to be broadly similar but by no means identical, 
those of Tritton, who discovered the discontinuity in the range, and Berger, 
being perhaps the more reliable. The wakes observed at these low Reynolds 
numbers were laminar with steady shedding frequencies which were detected 
with hot-wire anemometers and determined from Lissajou figures. Tritton and 
Berger give no details of observations at  Reynolds numbers in excess of 150 
and 160, respectively; Roshko, however, continued his measurements up to 
values of several thousands. Above Re = 300 the wake was found to be turbulent 

15 Fluid Mech. 19 
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but a predominant frequency could still be detected quite easily. The range 
150 < Re < 300 was concluded by Roshko to be a transition region in which the 
regular signal from the hot wire was interrupted with bursts of turbulence and 
in which he was unable to determine any frequency with accuracy. The measure- 
ments were made a t  a distance of six diameters downstream of the cylinder. 
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The shedding of vortices by a cylinder thus provides a possible means of 
measuring Auid velocity and it becomes necessary to design an instrument 
based on this phenomenon which is easy to make and convenient to use. The 
rather static arrangements of either wires or rods spanning the tunnel such as 
were employed by the workers to whom reference has been made are not very 
suitable for routine use and an alternative device, sketched in figure 6 was 
adopted. This ‘ Strouhal Device ’ consists of a vortex-shedding cylinder attached 
by a Y-shaped support to a cylindrical holder which also carries a hot-wire 
anemometer to detect the eddies in the cylinder’s wake. The anemometer is 
arranged so that the hot wire lies about one cylinder diameter behind and at 
right angles to the main cylinder, this orientation being chosen so that the 
interference of the hot wire with the vortex shedding process should be a mini- 
mum. The details of the effect of one cylinder on the vortex shedding of a second 
seems to be unknown but it is not unreasonable to suppose that a hot wire parallel 
to the main cylinder is more likely to have a detrimental effect than one at  right 
angles. The actual sensitive element of the hot-wire anemometer is adjusted to 
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lie about one cylinder diameter downstream and a little to one side of the main 
cylinder itself, this adjustment being quite critical if the instrument is to work 
well. A position too far from the central plane of the wake giving a well-formed 
but weak signal, while one too near the centre may lead to the detection of 
both rows of vortices and result in spuriously high values being obtained for 
the rate of vortex shedding. 

FIGURE 6. Sketch of a velocity-measuring device b d  on the vortex shedding of 
a circular cylinder. 

If an instrument such as that described above is employed to measure velo- 
cities in quiet flows which are relatively free from turbulence i t  may be found 
sufficient to determine the frequency at which vortices pass the anemometer 
by forming Lissajou figures on an oscilloscope, using the amplified hot-wire 
output signal and a sine-wave oscillator. When, on the other hand, the time- 
mean velocity of a turbulent stream is to be determined the regular signal due 
to the vortices has random fluctuations superimposed upon it which render 
Lissajou figures unsteady. Generally, rates of vortex shedding are appreciably 
higher than the frequencies associated with the eddies which carry most of the 
energy of the turbulence in the shear-flow tunnel where the devices were 
used. In  consequence it was found possible to improve the signal-to-noise 
ratio by passing the hot-wire bridge output through a high-pass filter. This 
signal was then used to trigger a bi-stable circuit, the square wave output of 
which was counted over a period of some seconds to obtain a time-mean value of 
the shedding frequency. 

As previously mentioned, Roshko, Tritton and Berger found regular laminar 
vortex wakes from Re z 150 down to Re z 50 and Roshko reported a similar, 
but turbulent, wake with a well-defined predominent shedding frequency for 

15-2 
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300 > Re and with an unsteady intermediate range 150 < Re < 300. These experi- 
ments were carried out in an air stream with a very low level of turbulence, 
uG/Uj2 z lo-’. The evidence from work in the turbulent stream of the heated 
shear-flow wind tunnel, for which p / U 2  z shows that this picture must 
be modified for vortex shedding in the presence of turbulence. Since any of the 
published empirical formulae lead to roughly the same Reynolds number for a 
given Strouhal number, irrespective of whether the flow is turbulent or laminar, 
an approximate value of Reynolds number may be obtained without any 
decision as to the particular mode of vortex shedding actually in operation. Thus 
it can be said that in the heated shear-flow wind tunnel, for Reynolds numbers 
in excess of 90, good signals are obtained which are free from ‘missing’, that is 
signals of which no cycles are omitted from the roughly sinusoidal component 
due to the vortices. At higher Reynolds numbers the signal remains excellent 
and, if anything, the frequency becomes more stable-this applies all the way 
through Roshko’s ‘irregular region’ and on to the highest Reynolds numbers 
recorded ( z 550) without any apparent transitions. At the other end of the 
scale things are different. Below Re z 80 the signal deteriorates, taking on an 
appearance similar to that shown by Roshko for Re = 180. 

Originally velocities were deduced from Strouhal frequency measurements 
by the application of Tritton’s results, extrapolating his curve for 80 < Re < 150 
given by the equation S = 0.224( 1 - 29*9/Re) 

to higher Reynolds numbers as required. Doubts first began to fall on this 
method when anomalies were noticed in the velocities obtained for the same 
fan speed setting, with different diameter cylinders, which seemed to be too 
large to be attributed to actual velocity differences. An experiment was there- 
fore carried out with pairs of Strouhal devices to try to elucidate the cause of 
these apparent velocity differences. Two instruments could be placed quickly, 
one after the other, at the same position in the unheated wind tunnel and mean 
frequencies were obtained for each device over a number of cycles of interchanges 
and for a wide range of settings of the gear controlling the tunnel fan speed. 
The diameters of the cylinders of the two instruments were chosen to be as 
different as possible consistent with both being able to work in a satisfactory 
manner over a reasonably wide, common, range of wind speeds, This compromise 
resulted in cylinder diameters being generally in a ratio of three or four to one, 
with the smaller cylinder having a diameter between 0.3 and lmm. Using 
Tritton’s curves, extrapolated as necessary, graphs were drawn for each cylinder 
in which mean centre-line velocity was plotted against fan gear setting. A typical 
plot is shown in figure 7. The two curves do not coincide, the velocities derived 
from the thicker cylinder being significantly less than those from the thinner one 
and, if the data is further used to extend Tritton’s curves to fill the gap 
150 < Re < 300, the resulting graph does not approach at  all well that of Roshko 
for Re > 300. If, however, velocities are recalculated on the basis of Roshko’s 
empirical equation for Re > 300 all the data fit together quite smoothly, as 
shown in the typical graph, figure 8. Under the conditions of the experiment 
values of Strouhal number, corresponding to low Reynolds number, are found to 

(3.2) 
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be in excess of those previously reported for turbulence-free incident streams 
but fit Roshko’s empirical formula for Re > 300, viz. 

S = 0.212(1- 12*7/Re). ( 3 4  

This increase, in the presence of turbulence, of the rate of vortex shedding for 
a given stream velocity is in accordance with intuition. The firmness with which 
a developing vortex is attached to its parent cylinder presumably decreases 
with growth so that at  some stage it finally breaks away, thus it is not unreason- 
able to suppose that the agitation of the vortex by the turbulence will shake it 
free sooner than in a laminar flow, so allowing the next vortex to begin to form 
earlier and leading to an increase in the shedding frequency. 

m m 
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Centre-line velocity (m sec-1) 

FIGURE 7. Time-mean centre-line velocities, 
calculated using Tritton’s formulae, for two 
velocity -measuring devices having cylinders 
of different diameter. 

Centre-line velocity (m sec-l) 

FIGURE 8. Time-mean centre-line velocities, 
calculated using Roshko’s formula, for two 
velocity -measuring devices having cylinders 
of different diameter. 

To summarize, it may be said that the periodic shedding of vortices by a 
cylinder can form the basis of a useful and practical means of measuring air- 
stream velocities down to a few tenths of a metre per second. When working in 
effectively turbulence-free streams the equations of Tritton and Berger are 
appropriate in connecting rate of vortex shedding with velocity, whilst if the 
flow has an appreciable level of turbulence Roshko’s ‘turbulent wake ’ equation, 
equation (3 .2)  above, can be used a t  all Reynolds numbers for which a well 
defined vortex frequency exists. The details of what happens at turbulence 
intensities between u-/U2 M 10-7 and 10-3 seem to be as yet unexplored, although 
it is clear that some sort of transition must occur between the two modes repre- 
sented by the turbulent and laminar wake forms of the empirical equation 
connecting Strouhal number with Reynolds number. 

4. Theories of turbulence in density-stratified flows 
For a theoretical background to the experimentally observed and mathe- 

matically derived results given later one may turn to the work of Ellison (1957) 
and Townsend (1958) on turbulence in density stratified flows. Both theories 
start from the Navier-Stokes equations and the equations of continuity and 
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heat transfer, but differ somewhat in the devices used to make progress from 
these. At high Reynolds numbers the rates of dissipation of turbulence are 
determined mainly by the typical length and velocity scales of the energy- 
containing eddies, the viscosity playing only a secondary role. 

With the instantaneous values of the various quantities which go to make 
up the field of turbulence expressed in the conventional manner as a time-mean 
part, denoted by a bar (-), plus a fluctuating part, denoted by a prime ('), so 
that, for example, the stream-wise component u of the flow velocity is expressed 
as 

u = i i f u ' ,  where u' = 0, 

Ellison introduced decay times T,, T, and T3, for p'2, q f2  = u'2+vf2+ wt2 and 
w'p', where p is density and u, v and w are the stream-wise, lateral and vertical 
components of the velocity respectively. These decay times were chosen so 
that if the production of turbulence were to cease the mixing process would 
begin to destroy the quantities 7 2 ,  etc., at rates l/T,, etc.; TI, T2 and T,are then 
defined by the equations 

- 
(4.1)' 

_ _ _ _ -  
__ 

(4.2) 

The equations (4.2), (4.3), (4.4) may now be rearranged to express various 
quantities such as li;llKm (i.e. the ratio of eddy conductivity for heat to the 
eddy conductivity for momentum) and the w'p'-correlation in terms of the com- 
ponents of the turbulent energy, the ratio of the decay times and a non-dimen- 
sional parameter (such as the flux Richardson number Rf, defined as the ratio 
of the rate at which buoyancy forces extract energy from the turbulence to the 
rate at which it is supplied by the shear-stress) which provides a measure of the 
stability of the flow. Thus, for example, 

If it  is supposed that the ratio TJT, is unity, as argued by Ellison, and that 
under conditions of high stability the turbulence becomes significantly flattened 
so that qf2/w2 z 6 ,  equation (4.5) indicates that Kh/Km should fall to zero a t  a 
value of Rf = 0.15, that is to say there exists a critical flux Richardson number 
Rfcrit which is much less than unity. This point will be taken up again when 
discussing the experimental results. 

Ellison also introduced two length scales, namely L, defined as T2(4'2)4 
and L, defined as (p'2)*/@/&). The first of these cannot be estimated with any 
accuracy from the data to be presented. L,, which is representative of the 
distance travelled by particles before either returning towards their equilibrium 
level or mixing, can, on the other hand, be obtained with some precision (see 

_ -  
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section dealing with figure 15). A further prediction, which is amenable to com- 
parison with experiment, expresses the variation with stability of the correlation 
between density fluctuations and the vertical component of the turbulence. This 
is 

Townsend, starting as did Ellison from the basic equations for the intensity 
of the temperature fluctuation and the kinetic energy of the velocity fluctuations 
of the turbulence, introduced length scales Lt and L, where 

~ _ _  
Kt'V2t' = - .$t'2(W'2)-k/L, 

and L, is the corresponding dissipation length-scale for the velocity fluctuations, 
t' being the fluctuating part of the temperature. These scales are nearly equal to 
the integral scale of the turbulence in neutral conditions. Ignoring advection 
and radiation terms and writing k; = wft12/w12 t r2  and k, = u'w'/wt2 we obtain 
for the temperature fluctuation 

~ -_ -- 

($)* = 3 k t L t ( a T / 8 ~ )  (4.7) 

(where T is the time mean temperature), by the aid of which it is possible to 
calcuIate L, with some accuracy from the data presented later. 

The length scale L,, can be shown to be given by the equation 

which provides a means of calculating, albeit only roughly, values of L, corre- 
sponding to the results of the present experiments. Rf may now be expressed in 
terms of the parameters kt, k,, L,, L,, by the relationship 

Rf= 4 { 1 - ( 1 -  lY"RiL,k;/L,k;)3), (4.9) 

(4.10) 

from which it is easily seen that in neutral conditions 

K,/K, = 3 (L, k;/Lu kt). 
Comparison of these deductions with the observed experimental results is 

again deferred until later in the paper. 

5. The experiments 
For a field of turbulence as complex as that in the heated shear-flow wind 

tunnel there are many measurements which could be made and it was necessary 
to make a choice and concentrate on those which were likely to be of most interest 
and importance. In  addition a degree of selection is also imposed by the use of 
hot-wire anemometers for taking measurements. For the major part of the 
experiments the characteristics measured were the streamwise and vertical 
components of the turbulence together with the temperature fluctuation at  
the same point, and the three double correlations between them. A few runs 
were also made in which the horizontal component normal to the flow was 
measured instead of the vertical component. 
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For all these measurements a special hot-wire anemometer was used in which 
a conventional 'X-wire' was supplemented by a third hot-wire lying close by 
and parallel to one arm of the X ,  the instrument being operated in the constant 
current manner. 

For a given hot-wire anemometer the rate of heat loss and hence, for a constant 
heating current, its temperature and electrical resistance depend, inter alia, 
on the velocity and ambient temperature of the incident air stream. Whilst 
both fluctuations of velocity and temperature will produce changes of the wire 
resistance which can be detected in the conventional manner, the relative magni- 
tude of the changes of wire resistance produced by them is not constant but 
depends on the mean wire temperature. A detailed calculation of the sensitivities 
for a finite wire, taking into account the temperature variation of the parameters 
involved, has been made by Ellison?. The expressions resulting from these 
calculations are extremely cumbersome and, though mathematically exact, 
do not have any immediately obvious physical significance. Thus, though the 
exact expressions were used in calculating the sensitivities necessary for the 
reduction of the experimental data to give the results presented later, it  is 
sufficient for the present description of the experimental method to take much 
simplified equations. 

Consider a very long hot-wire anemometer heated by a constant current to a 
temperature T, and immersed in a stream of velocity U and ambient tempera- 
ture T,. Then if N u  is the Nusselt number of the wire, as T,. + T, 

aT,laT, -+ 1, ( 5 . 2 )  

while they become comparable for (T, - T,) large. Comparing equations (5.1) 
and (5 .2 )  it  can be seen that a hot-wire anemometer becomes relatively more 
sensitive to temperature than to velocity fluctuations as its mean temperature 
approaches that of the air and in the limit behaves as a platinum resistance 
thermometer. A pair of neighbouring hot-wire anemometers operated at  widely 
differing temperatures will, therefore, have different sensitivities to the local 
fluctuations of velocity and temperature and provide sufficient information for 
separate values of both to be calculated. For wires such as those used in the heated 
shear-flow experiment, for which T, = 300 "K and U = 1 mjsec may be taken as 
typical figures, the ratio of the sensitivites to velocity and temperature of the 
hottest wires at  about 500 "K was - 0.932 whereas for a cold wire at 330 OK the 
ratio became - 0.079. 

Briefly then, the experimental procedure made use of three hot-wire 
anemometers. Two of these constituted the 'X-wires', familiar from the con- 
ventional hot-wire anemometry of unheated turbulence, being operated at 
relatively high temperatures and thus sensitive to changes in both the velocity 
and the temperature of their environment. The third wire, lying parallel to one 
of the former, was much cooler and so responded primarily to temperature 
fluctuations. 

t Private communication. 
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The total root-mean-square power was obtained for each wire and for the wires 
taken together in combinations, two or three at a time. From these readings, 
if taken using vertical wires, and with the computed sensitivities of each _ _  wire to 
velocity and temperature, the root-mean-square power components u ' ~ ,  wI2 

and the formally similar t 3  could be calculated, together with the mean cross- 
products u'w', w't' and zclt'. Asimilar set with w replaced by v, was obtained when 
the wires were mounted horizontally. 

From the six main results of each run and a knowledge of the velocity and 
temperature gradients in the tunnel, further quantities of interest can be deduced, 
such as the correlation between the various components of the turbulence and 
the ratio of the eddy conductivity to eddy viscosity. The two major parameters 
of the main flow upon which these mean properties of the turbulence may be 
expected to depend are, of course, the flow Reynolds number and the local 
Richardson number, the latter being defined as [gaT/az]/[T (a U j a ~ ) ~ ] ,  where T 
and U are respectively the local time mean temperature and velocity of the 
flow, g the acceleration due to gravity and z the vertical co-ordinate. In  the 
graphs, which are presented later, the various quantities are plotted against 
this gradient form of Richardson number, rather than the theoretically more 
significant flux form, since the latter involves the ratio KJK,, the determination 
of values of which was one of the objects of the study. 

The majority of the experimental runs were made at station 5, 4.57m 
downstream of the shear grid, a distance corresponding to 174 times the sepa- 
ration between the bars of the grid, but a smaller group was conducted further 
upstream at station 3, 1-73 m or 66 bar-separations from the grid. In  every case 
the instruments were placed on the centre line of the tunnel. Differences in the 
results obtained at  the two stations show that the flow takes some time to 
become fully established and the high values of K J K ,  obtained at station 5 
suggest that even there a steady state has not been completely attained. It is 
unfortunate that the growth of the boundary layers on the tunnel walls so erode 
the linear velocity profile that it is not possible to retreat appreciably further 
down the tunnel and away from the grids. 

I n  principle it should be possible to use the tunnel to obtain data over a wide 
range of Richardson numbers, up to a limiting value set for any given velocity by 
the total power available, simply by varying the heat input to the grid. In  practice 
it proved difficult to obtain reliable data for combinations of small Richardson 
numbers and low velocities since, with a reduced power input to the heater grid, 
temperature fluctuations comparable in magnitude to those generated in the 
tunnel entered it from the hanger where it was housed. As a consequence runs 
could not be made having values of Richardson number and velocity chosen as 
independently as might have been desired and a certain correlation exists between 
them such that large Richardson numbers tend to be associated with small velo- 
cities and vice versa. This correlation is least at intermediate Richardson numbers 
and over the range 0.05 < Ri < 0.3 it  proved possible to obtain any desired 
Richardson number for velocities from 0.5 up to 1.5 m/sec; thus any trend with 
Ri observed in this range is likely to be fairly reliable. 

The accuracy of the results finally obtained is hard to assess, since they are 

__ __ 
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produced at the end of a very long chain of measurements and calculations, whilst 
the phenomena under investigation can be themselves only described in statis- 
tical terms. The most precisely known quantity is the mean velocity. From the 
variations of the count during measurement and the reliance placed by Roshko 
(1953) on his empirical equations, mean velocities are probably known to better 
than 10 %, in absolute terms, and rather more exactly relatively. The calculated 
Richardson number, depending as it does on the velocity and temperature 
gradient, is perhaps accurate to 10% absolutely and a similar accuracy can 
reasonably be claimed for the mean curves followed by the turbulence data to 
be presented. 

6. The results 
In  the graphs which follow, data from observations at station 3 are plotted 

as open rings, whereas those from station 5 are indicated by solid circles; further- 
more, on graphs with wind speed as abscissa, points corresponding to conditions 
in the unheated tunnel are plotted as rings or circles with a 'tail '. Dashed lines, 
passing through the centre of gravity of clusters of data points, have been drawn 
on the graphs so as to indicate the general trend of the results. For those graphs 
with a single curve on which, however, both station 3 and station 5 data are 
represented the lines are drawn for the latter only. 

The three graphs, figures 9, 10 and 11, of ut2, wI2 and v? respectively, may 
be taken together. Comparison of the groups of points taken at stations 3 and 5 
and plotted in figures 9 and 10 show that considerable changes occur in the 
flow between the two positions. All the points, both forT2/U2 and for wT/U2 
(where U is the time-mean velocity written, for simplicity in place of U), show 
a tendency for the ratio to rise with increasing mean velocities, but whereas this 
rise is quite slight at station 3 showing an increase by a factor of 2 over the 
range 0.4-1.2 mlsec, a t  station 5 a strong variation is observed so that from having 
approximately the station 3 values at  a velocity of 0.4 mlsec F/ U2 and wT/ U 2  
become eight times greater at 1.2 m/sec. If produced to the left, any reasonable 
line through the station 5 points would appear to intersect the velocity axis at  
about 0.3 m/sec. 

Although no measurements are available for the v-component of the turbulence 
at station 5 ,  a few horizontal runs were made at  station 3. The values of lj'2/U2 
obtained are plotted in figure 11 and a weak rise with increasing velocity is again 
observed at a rate comparable with that of the other components at station 3. 
The possibility of an exchange of energy between the different components can, 
therefore, be excluded. Neither is the effect strongly dependent on stratification, 
since the points on the graphs have been plotted irrespective of Richardson 
number without increasing the scatter above the level of that of the neutral con- 
dition points (plotted with 'tails') taken on their own. Thus the origin of this 
extra energy gained by the turbulence at high velocities is not plain and it is 
hoped that later work with the apparatus will clear up the mystery. 

The next three graphs, figures 12,13 and 14, may again be considered together. 
In  figure 12 the normalized w-component,W'2/Uz, is plotted against the (gradient 

_ _ _  
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form) Richardson number while in figure 13 the ratio of wx to u7z is given. The 
graph of T21 U2 shows that this quantity falls off quite spectacularly with increas- 
ing Richardson number and it would appear to become effectively zero for 
Ri M 0.45 and accord well with the idea that vertical motions should be sup- 
pressed by the stable stratification of the air. 

I I I I I I 1 1 -  I " " ' " '  
- 2 -  - 2 2 ,  

;* 

2 -  
_ _ _ - - - -  -0 i5 1- 

w 
- * \  0 0 

0 -  
0 

- 
\ 

X o x  b.8 
*# v - 

\ *  
b 

r 

0 1.; * \  . 6 1-  
, - + -  . 

, . - - - 
\ 

I% - 5 0  

- -  - -  ,"" ' 0  

/ *- - -0 
I I I I I I I I  I I I I I I I P  

, 
/ b  * /  

*,*'* 
I' 

/ *  
J 
/ i 

I 

I 1 1 1 1 1 1 1  

0.4 0.6 0-8 1.0 1.2 
Centre-line velocity (m see-l) 

FIGURE 9 

0.4 0.6 0.8 1.0 1 -2 
Centre-line velocity (m see-l) 

FIGURE 10 

FIGURE 9. The mean square of the u-component of the turbulence, normalized by 
dividing by the square of the mean centre-line velocity, plotted against the centre-line 
velocity. (Points b or '. were taken in the unheated wind tunnel.) 
FIGURE 10. The mean square of the w-component of the turbulence, normalized by 
dividing by the square of the mean centre-line velocity, plotted against the centre-line 
velocity. (Points b or were taken in the unheated wind tunnel.) 

Centre-line velocity (m see-1) 
FIGURE 11 

Ri 
FIGURE 12 

FIGURE 11. The mean square of the w-component of the turbulence, normalized by 
dividing by the square of the mean centre-line velocity, plotted against the centre-line 
velocity, station 3 datr, only. (Points b were talien in the unheated wind tunnel.) 
FIGURE 12. The normalized mean-square w-component of the turbulence plotted against 
Richardson number, Ri. 
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In  interpreting figure 12 the correlation mentioned earlier between velocity 
and Richardson number should be borne in mind together with the variation 
of w'2/U2 with U .  This effect tends to reduce the slope of the curve and a more 
conservative estimate of the variation of p / U 2  with Ri may be had by taking 
a curve of the same general shape as that in figure 12 but with a slope like that of 
figure 13. Figure 13, showing the ratio W ' ~ / U ' ~ ,  is probably largely free of velocity 
effects, which are broadly similar for both T2 and 3. Added support is given to 
this belief by the excellent manner in which the station 3 points, for which the 

_ _  
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FIGURE 13. The ratio of the mean squares 
of the w- and u-components of the turbu- 
lence plotted against Richardson number. 

FIGURE 14. The ratio of the mean squares 
of the v- and u-components of the turbu- 
lence plotted against Richardson number 
(station 3 data only.) 

intensities vary much less with velocity, lie amongst those of station 5. Because 
of its relative independence of velocity the way in which this curve varies with 
Richardson number is probably a fairer representation of the form of variation of 
w'2 than that shown in figure 12 and, rather than suggesting a cut off) indicates 
a more gentle fall to a value in the most stable conditions observed equal to 
about half that under neutral conditions. 

- 

Figure 13 can also help to provide information about the ratio 
_ _ - -  _ _  
(u'2 + 21'2 + w'2)/w'2 = q'Z/w'2, 

which appears in Ellison's theory and which is important in predicting the value 
of the critical-flux-form Richardson number and the shape of the curves for 
K,/K, and the other functions. Here we are handicapped by not having much 
data for p. However, writing the expression in the form 

- _  _ _  _ _  
qt2/wt2 = z ~ ' ~ / w ' ~ (  1 + p )  + 1, where p = v12/u'2, (6.1) 

we see that the answer is not too critically dependent on the value of vT, with 
a given error in p leading to differences only one third as great in the answer. 
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Thus no large error will be committed if, in the absence of anything better, we 
take the value of p from the station 3 data presented in figure 14. Then, from the 
results of the present experiments, the values set out in table 1 are found with 
an accuracy of perhaps 10 yo. These are rather small compared with the 5.5 used 
by Ellison though his value was intended to be representative of neutral con- 
ditions in the Earth’s boundary layer. 

If the variations with Richardson number shown in figures 13 and 14, and 
hence also in table 1, are accepted as being real and not merely reflexions of the 
velocity dependence of the intensity of the turbulence, then the results indicate 
changes in the structure of the turbulence which depend on stability. Under 
neutral conditions the flow is reasonably isotropic with u7 perhaps 10% in 
excess of 3 andW’2. At higher Richardson numbers both * and T2 fall relative 
to 3, though the effect is more pronounced in the case of which has only Q its 
neutral-condition value when Ri = 0.8. The intuitive notion that turbulence 
should become ‘flat ’ with a suppression of vertical motions thus seems to be borne 
out by the observations. 

Richardson number 0.0 0.2 0.4 0.6 

( 7 2  + vx+ W’2)/Z”’2 3.4 4.1 4.7 5.0 

TABLE 1 

_ _  

~ ~~ ~ ~ 

Figure 15 shows the temperature fluctuations normalized by dividing by the 
square of the temperature gradient. Despite the fact that the station 3 points 
(open circles) are rather few in number, it can be seen quite clearly that there are 
differences between the temperature fluctuations at the two positions. A t  
high Richardson numbers the curve followed by the points obtained at station 5 
falls effectively to zero, while at station 3 it still retains an appreciable fraction 
of the amplitude achieved in neutral conditions, being perhaps three or four times 
the station 5 value for Ri = 0.4. Under conditions of less extreme stability the 
two curves approach one another and become approximately the same below 
Ri = 0.2, though the shortage of station 3 points in that region makes i t  difficult 
to be completely certain of this. 

If it is supposed that the time taken for equilibrium to be reached becomes 
longer as the stability increases, then the data of figure 15 imply that, whereas 
at small Richardson numbers equilibrium is attained before reaching station 3, 
under highly stable conditions insufficient time elapses between the generation 
of the temperature fluctuations and their arrival at this point. Station 5 is, 
however, 2.7 times further from the shear grid and 2.3 times from the heater so 
that correspondingly longer times are available in which the steady state can be 
reached. Further support is given to this argument in a later discussion of 
suggested values for the decay times TI, T, and T3 of Ellison’s theory when the 
decay time TI, associated with temperature fluctuations, is found to increase 
with stability. 

The quantity plottedin figure 15is equal to Lg of Ellison’s theory and suggested 
values of L, derived from station 5 results are given in table 2. Interpreting 
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Richardson number 0.0 0.2 0.3 0.4 0.6 0.8 
Ellison's L, (mm) 77 62 45 33 21 17 
Townsend's L, (mm) 67 63 60 53 39 31 

TABLE 2 

various relationships between L ,  and the available data, values €or neutral 
conditions may be obtained which range from 0.16 to 0.29m. The Townsend 
length scale L,may be found immediately from LH by use of the data of the (w', t ' ) -  
correlation graph, figure 16, and values are tabulated in table 2. 

The correlations between the components w' and t', u' and w', u' and t' are given 
in figures 16, 17 and 18, respectively. In general, the points from both stations 
seem to lie together quite well, but is is probably better that attention should be 
confined to the station 5 points which correspond to more nearly steady-state con- 
ditions. The (w', t')-correlation falls rapidly with increasing Richardson number 
from a value of perhaps 0.38 in neutral conditions to a value around 0.2 for Ri in 
excess of 0.3. The neutral condition value is high compared with the 0.3 calculated 
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by Ellison on the basis of TJT, = 6 but accords well with the 0.4 indicated by 
Swinbank’s (1955) results. The shape of the curves agrees broadly with that 
predicted by equation (4.6) but, taking the observed correlation coefficient, a 
value TJT, = 3.5 is obtained for neutral conditions. 
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FIGURE 17. (u’, w’)-correlation plotted FIGURE 18. (u’, t’)-correlation plotted 
against Richardson number. against Richardson number. 

The (u’, w‘)-correlation is less strongly dependent on the Richardson number, 
having a neutral condition value a little less than 0.5, and so is rather in excess 
of the 0.4 usually taken for this constant. The (u’, t’)-correlation shows a distinct 
tendency to increase with Richardson number, suggesting that as the vertical 
transport of temperature by the turbulence is reduced by the stability, horizontal 
transport becomes more significant. This effect is that which would be anticipated 
if the turbuIence degenerated into a wave-like motion at high Richardson num- 
bers.t Information as to the behaviour of the (o’, t’)-correlation is, unfortunately, 
too scanty to be able to decide whether this also shows an increase with stability. 

t The author is indebted to Dr A. A. Townsend for this observation. 
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floor, in which the air velocity was so high as to only give very small Richardson 
numbers. Later, Schlinger, Berry, Mason & Sage (1953) arrived at 1.35 with 
the same apparatus. The measurements of Ellison & Turner (1959, 1960) using 
salt solution in a water channel also indicate values in the range 1.3 -1.4. 

If there are conflicting views as to the value of K,/K,, in neutral conditions, 
its variation with stability is even less well established. The data presented by 
Swinbank (1955) are too scattered to indicate any more than a general trend 
but those of Ellison & Turner do show a strong dependence on Richardson 
number. For very large Richardson numbers, Proudman (1953), working on 
observations made in the Kattegat, gives K J K ,  of the order 0.05-0.03 for Ri 
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FIGURE 20. Theratio ofeddy conductivity 
to eddy viscosity (K,/K,) plotted against 
Richardsonnumbor (station 3 data only). 
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0.0 0.2 0.4 0.6 0.8 

Ri 
FIGURE 21. Thoratioofeddy conductivity 
to eddy viscosity (Kh/Km) plotted against 
Richardson number (station 5 data only). 

in the range 6 1 0 .  Though these values of the ratio are very small, compared 
with those generally encountered, they are still several orders of magnitude 
greater than could arise from molecular diffusion. It has been suggested by 
Stewart (1959) that under these extreme conditions the transfer mechanism is 
more akin to the breaking of internal waves than to turbulence in the usually 
accepted sense. 

The dependence on stability is clearly seen, in figures 20 and 21, but the abso- 
lute values of K,/K, are much larger than those previously observed, being 
specially so in the case of the station 3 points. These discrepancies may be 
accounted for by postulating that the two transport processes take a finite time 
to become fully established but that, of the two, the time constant for eddy 
viscosity, T,, say, is longer than that for eddy conductivity, T,. In  figures 22 
and 23 the eddy viscosity and conductivity respectively are shown plotted 
against the Richardson number for the two stations. Whereas the values of K ,  
are substantially the same at the two positions, K ,  is approximately three times 
as great at  station 5 as at  station 3 and is presumably still changing at  a time 
when K ,  has become established at  its final value. 

In  passing it may be noted that an appropriate length scale for the stretching 
of eddies by the shear and for the development of K ,  is U/(aU/az)  which has a 
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value of about 0.5 m in the Shear-Flow Tunnel. Such a length is comparable with 
the distances between the heater grid and the working stations. 

If the K,lK, curves, and especially that of figure 21 for which there is the most 
data, are supposed to be of the correct shape except for being 'stretched' 
vertically, it is possible to estimate a value for Rfcrit, the value of the flux- 
form Richardson number a t  which Kh/hr,,l falls to zero. Taking the formal 
definition of Rf, Rf = Rwhlh-?,o> (6.2) 
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FIGURE 22. Tho eddy viscosity (K,) 
plotted against Richardson number. 

FIGURE 23. The eddy conductivity ( K h )  
plotted against Richardson number. 

Rfcrit is then the limit to which the right-hand side of this expression tends as 
Ri increases. From figure 24 this limit is found to be approximately 0.35. The 
curve is drawn to pass through the majority of the data. As indicated on the 
graph, if very large values of Ri are taken, points are obtained which lie to the 
right of the curve. However, it is reasonable to ignore them for the purposes 
of calculating Rfcrit and suppose that they are due either to experimental diffi- 
culties involved in working at extreme stabilities or to more fundamental causes 
such as the break-down of normal turbulent transport processes and their re- 
placement by some other mechanism, perhaps of a wave-like nature. 

Just as in the case of A7h/ATm, our knowledge of Rfcrit generally is again very 
slight. Ellison calculated a value of 0.15 in his 1957 paper, which was also found 
from experiment by Ellison & Turner (1959). The work of Proudman mentioned 
earlier suggests, on the other hand, that Rfcrit may be as great as 0-25 or 0.3. 
The high values of the critical Richardson number deduced from the results of 
the present experiments may be attributed to the failure in attaining steady 
conditions, any estimates made from the station 3 results, where departures 
from equilibrium are even greater than a t  station 5, leading to still higher 
answers. 
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FIGURE 24. The ratio of eddy conductivity to eddy viscosity ( K J K , )  plotted against, 
flux-form Richardson number. A critical value of flux-form Richardson number being 
indicated in the region of Rf = 0.35. x , Ignored points. 

Richardson number 0-0 0.2 0.3 0.4 0.6 
TIIT, 0.55 0.45 0.42 0.40 0.37 
Tl V(m) 1.33 3.25 3.79 4.23 (3.46) 

- 3 5 7 Approx. T ,  (sec) - 

TABLE 3 

table 3. Equation (4.2) can be rearranged to give Tl in terms of the quantities 
for which graphs are available, 

(6.3) 

7: U ,  the distance travelled by air during the decay time of if moving with 
the centre-line velocity is also tabulated in table 3, together with respresentative 
values of Tl. 

The values of the ratio Tl/T2 found above are approximately only half those 
suggested by Ellison, the differences corresponding largely to the differences in 
Rfcrit. If, as an alternative, i t  is assumed that Tl/T2 = 1,  Rfcrit must take a 
value 0.2 (taking qf2/w12 = ti for large Ri). Such a figure would also be obtained 

_ _  
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from figure 21 if the ordinates were 'compressed' to 0.55 of their original values. 
This process would then lead to K,/K, = 1-3 in neutral conditions so bringing it 
in line with the estimates of previous workers. There is thus some fairly strong 
evidence in support of the belief that under equilibriun conditions the critical 
flux Richardson number has a value of about 0.2 and that T,/T, is approximately 
unity, as supposed by Ellison, the values of 0.35 for the former and around 0.5 
obtained for the latter from the present experiments being a further symptom 
of the developing flow. 

We turn now to the quantities that appear in Townsend's theory. Values of 
L, and k, have already been given; if the shear parameter k,  = u'w'/w'~ is plotted 
against Richardson number then, despite the scatter, a mean value of 0-6 is 
indicated, which seems to be independent of the stability of the flow. Rough 
estimates of L,L may be derived from equation (4.8) and these are set out in table 4, 
along with the ratios LJL, and L,k;/L,kE. Reservations must be held as to the 

~- 

Richardson numbor 0.0 0.2 0.3 0.4 0.6 0.8 

L ( m m )  42 35 26 22 15 12 
LtILU 1.6 1.9 2.5 2.6 2.7 2.7 
Lt kf /Luk:  0.90 0.38 0.33 0.21 0.19 0.19 

TABLE 4 

accuracy of the values of L, suggested above since the equation involves both 
b72/U2 and Rf explicitly. The former, with its dependence on U ,  and the latter 
involving, as it does, K,/K, with its atypically high values, are probably peculiar 
t,o the shear-flow wind tunnel rather than characteristics of turbulence 
generally, so that considerable care must be exercised if the results derived from 
these quantities are applied in any other situation. 

By equation (4.11) a neutral condition value of 2.7 may be predicted for 
Kh/hrrL at station 5 ,  which is not too different from the 2.2 to 2.3 actually observed, 
especially when the large number of stages involved in the calculations are taken 
into account. 

Perfect agreement between the observations and the theory cannot be antici- 
pated since the data already presented shows that the flow in the tunnel is 
developing. Only k,,, of the four parameters appearing in the theory, seems to be 
really independent of Richardson number, though k, and L,/L, show signs of 
becoming constant a t  high stabilities. Townsend, by contrast, supposed that 
k,, 16, and LJL, were substantially independent of Richardson number. Thus, 
since the conditions of the present experiments are only a crude approximation 
to those specified by Townsend it is not too surprising that the more delicate 
predictions cannot be confirmed. 

7. Conclusions 
The experiments just described have been both interesting and a little dis- 

appointing. Interesting in so far as they have produced much new information 
concerning the variation with stability of the various quantities associated with 
turbulence and turbulent transport processes while at the same time indicating 
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the possibility of a detailed study of these complicated flows. Disappointing in 
that it was not possible to attain steady-state conditions in which, for example, 
K J K ,  had the neutral-condition value found by previous workers; the indica- 
tions were that a doubling, or even trebling, of the linear dimensions of the 
apparatus would be necessary to do so. In  particular the absolute values of the 
various results deducted from the experimental data are probably peculiar to 
the shear-flow wind tunnel, rather than characteristics of turbulence generally, 
so that considerable care must be exercised if they are applied in another 
situation. 

The manner in which these quantities vary with stability is likely to be more 
nearly universal. This being the case, the results obtained serve to confirm 
many of the views previously held. Thus K J K ,  falls with increasing Ri and there 
is a sharply defined critical flux Richardson number. The turbulence also appears 
to become ‘flat’ with increasing stability, the velocities and the length scales 
associated with vertical motions becoming less as Ri increases. Less well antici- 
pated is the phenomenon of the long time-constant associated with the develop- 
ment of the flow, 
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